
EDC1 Exam project 1

Design summary

Micha l Szopiński

January 20, 2020

1 Design objectives

The goal of the project was to create a digital system calculating the equation:

y =

k∑
i=1

(4x2
2i − 1

4x
2
2i−1)

k
(1)

where k ∈ {1, 2, 4, 8, 16, 32, 64, 128}. The numbers arrive in series over an
8-bit parallel bus and are coded using natural binary code. k arrives first, x1,
x2, x3, . . . follow.

Handshaking was to be implemented using the following signals:

• RDY (ready) – raised by the system to request a number

• NRDY (number ready) – raised by the external circuit to signalize that the
requested number is waiting at the input

• RR (result ready) – raised by the system to signalize that the output con-
tains the calculated result, used simultaneously with RDY

Result accuracy and computational speed were critical factors of the design.

1

2 Operational subsystem design

2.1 Multiplication operands

A crucial observation to the realization of the circuit is that formula (1) can be
rewritten as:

y =

k∑
i=1

(2x2i + 1
2x2i−1)(2x2i − 1

2x2i−1)

k
(2)

thus reducing the required amount of multiplication operations to one. Be-
cause calculating the operands of the multiplication requires both numbers to
be available, x2i−1 must be buffered inside a register before x2i is loaded.

Once both numbers are available, they can be supplied to two adders, where
they can be added and subtracted. The results are then loaded as the operands
of the multiplicator circuit.

2.2 Bus width considerations

In order to preserve accuracy when x2i−1 and x2i are divided and multiplied
by 2, the buses supplying them must be widened to carry at least 10 bits, nine
of which integer and one fractional. In practice, a 16-bit bus is used. Because
both numbers are positive, zeros are used as padding on on both sides.

To prevent integer overflow when summing up individual products, a suffi-
ciently wide register must be chosen to store the result. A product of two 10-bit
numbers can be up to 20 bits wide, therefore the output width was chosen to be
the nearest power of 2, 32, which can store the sum of up to 211 such numbers,
positive or negative.

Even though the output of the adders is 16-bit, the shift registers storing
the operands must match the width of the result register. This is because when
the registers are shifted, the operands may become truncated, resulting in an
incorrect sum.

The sum of products, before the final division, is a 32-bit number with 1
sign bit, 29 integer bits and 2 fractional bits, as a natural consequence of the
multiplication of two 1-fractional-bit signed numbers.

2

2.3 Multiplicator circuit

The part of the operational unit responsible for the multiplication is a standard
implementation of the “shift and add” algorithm. On each iteration, operand A
is shifted to the left and operand B is shifted to the right. If the least significant
bit of B is high, A is added to the sum. The multiplication ends when operand
B is zero.

The result is cleared when k is loaded to the circuit.

2.4 Dynamic division and output format

One of the requirements of the project is the dynamic division of the final sum by
a variable power of two. There are two commonly used methods of performing
such division, each resulting in a different output format.

The first way is to split the output bus into an integer sub-bus an a fractional
sub-bus, each containing a different amount of significant bits. By default, the
output contains two significant fractional bits (2.2§4), but it may contain up to
9 significant fractional bits and as few as 23 significant integer bits (including
the sign) after being divided by 27 = 128.

The implementation of this method would require the use of two shift reg-
isters, one shifting into the other, and is linear in complexity. As such, it was
concluded that it would be inefficient given the requirements of the design.

The second approach is to output the summation result as-is and specify
the number of fractional bits separately for the external system to handle. The
number of significant bits is given by:

nfrac = 2 + log2 k (3)

Given the fact that k is restricted to a set of powers of two, the logarithm-
calculating circuit can be constructed as a simple combinatorial circuit of three
OR gates. Its output can then be fed into an adder with a constant value
supplied as the second operand, and the number of fractional bits is thereby
calculated with static complexity. Such an approach was used in the final design.

Because k only appears at the start of the number sequence, it must be
buffered to be available at the end.

3

2.5 Processed values counter

Lastly, to keep track of the number of processed pairs (the number i), the
circuit uses a bi-directional counter permanently configured to decrement its
stored value. The counter is loaded simultaneously with the k buffer.

3 Control subsystem algorithm

3.1 I/O operations and handshaking

Considering the specification of the handshaking protocol, inputting numbers
into the system can be thought of as “requesting” them from the external circuit,
following a double-acknowledgment pattern. All input operations follow the
general algorithm:

1. RDY is raised to request a new number from the external circuit.

2. NRDY is raised to signalize that the number is ready to be read.

3. RDY is lowered to request input withdrawal once it’s been read.

4. NRDY is lowered, enabling further communication.

Output operations are simplified; the system raises RR whenever its output
contains a valid result. No acknowledgment is taken from the external circuit.

3.2 Main program loop

The main loop starts with a special case of the input loop. It requests a num-
ber while simultaneously raising RR to signify that the result of the previous
calculation is ready. Once the first number k becomes available, RR is lowered
and the number is read into the memory, specifically the pair counter and the
divisor buffer. The result register is also cleared.

When k is withdrawn, the program proceeds into the pair processing loop,
after which the main loop reiterates.

3.3 Pair processing loop

To begin, the pair processing loop requests two numbers: x2i−1 and x2i. When
x2i−1 becomes available, it’s loaded into a buffer. When x2i becomes available,

4

the sum and the difference of the two numbers are fed into the multiplicator
circuit for further processing.

As an optimization, the loading of x2i−1 is also used to decrement the pro-
cessed pairs counter. A separate step would make the algorithm clearer, but
also slower.

Before the multiplication begins, the algorithm checks if it has already fin-
ished to account for multiplication by 0. If that is the case, the multiplication
step is skipped, otherwise, the program steps into a dedicated loop.

Following the multiplication, the processed values counter is taken into con-
sideration. If there are no more pairs to be processed, the processing loop
terminates, otherwise it reiterates.

3.4 Multiplication loop

The multiplication loop is a standard implementation of the “shift and add”
algorithm. Addition and shifting occur on separate steps to avoid a race condi-
tion.

3.5 Algorithm reiteration

Once the processing loop terminates, the main loop reiterates. No further steps
are required at this point. The result of the summation is stored in the memory
and is available at the output. The divisor circuit is outputting the correct
number of fractional bits thanks to the number k being stored in its memory.
The RR flag can be safely raised while awaiting input.

3.6 Two-phase clock

To avoid race conditions between the control and operational subsystems, a two-
phase clock is used. This introduces a delay between the control signals being
sent and executed, ensuring they are properly received before being processed.
In practice, the clock is implemented by negating the clock signal in front of the
operational subsystem.

5

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

CEO

D[7:0]
Q[7:0]

L

CLR

C

CE

UP

TC

CB8CLED
G
N
D

G
N
D

processed
values
counter

Michal Szopinski
EDC exam problem 1
Data path

x1

G
N
D

BUF8
x2(9:2)

x2(15:10)
constant

00

9 bits integer (1 insignificant)
0 bits fractional

multiplied by 2

x1(7:0)

7 bits integer
1 bit fractional

divided by 2

x1(15:8)
constant

00
C

CE

CLR

D[7:0]
Q[7:0]

FD8CE

x2 x2(15:0)

x1(15:0)

G
N
D

CI

S[15:0]

B[15:0]

A[15:0]

CO

OFL

ADD16

CI

S[15:0]

B[15:0]

A[15:0]

CO

OFL

ADD16

(x2 + x1)

(x2 ­ x1)

G
N
D

V
C
C

INV16

input to adders
15 bit int (incl. sign)
1 bit frac

x(7:0)

decrement_counter

clock counter_zero

x(7:0)

clock

load_x1

x(7:0)

mult_load

load_k

constant

0
x2(1:0)

SR32CLE
D(31:0)

SLI

L

CE

C

CLR

Q(31:0)

ZERO

G
N
D

mult_load

mult_shift

clock

G
N
D

x2 + x1

mult operand a

ADD32
A(31:0)

B(31:0)

CI

OFL

CO

S(31:0)G
N
D

FD32CE
CLR

C

CE

D(31:0)

Q(31:0)

default output
30 bit int (incl. sign)
2 bit frac

total sum
clock

mult_add

y(31:0)

load_k

SR32CLED
D(31:0)

SRI

SLI

L

CE

C

LEFT

CLR

Q(31:0)

ZERO

G
N
D

mult_shift

clock

G
N
D

G
N
D

mult operand b

x2 ­ x1

mult_done

Qb(31:0) Qb(0)

BUF

mult_lsb

S1(15:0)

S2(15:0) pad with sign

pad with sign

C

CE

CLR

D[7:0]
Q[7:0]

FD8CE

G
N
D

k

LOG2
x(7:0) y(7:0)

OFL

CO

A[7:0]

B[7:0]

S[7:0]

CI

ADD8

constant

02

G
N
D

specify the number of frac bits
2 bits by default + result of division

divisor

x(7:0)

load_k

clock

y_frac_bits(7:0)

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

OR4

OR4

OR4

x(1)

x(3)

x(5)

x(7)

x(2)

x(3)

x(6)

x(7)

x(4)

x(5)

x(6)

x(7)

y(0)

y(1)

y(2)

y(7:3)
constant

000

x(7:0) y(7:0)

log2 calculator circuit

Michal Szopinski

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

SR16CLED

SLI

Q[15:0]

LEFT

L

D[15:0]

CLR

CE

C

SRI

Q1(15:0)

SR16CLED

SLI

Q[15:0]

LEFT

L

D[15:0]

CLR

CE

C

SRI

Q
1
(0
)

D(31:16)

D(15:0)

Q0(15:0)

Q
0
(1
5
)

BUF16

BUF16

Q(31:16)

Q(15:0)

Michal Szopinski

32­bit async­clearable sync­loaded bidirectional shift register

N
O
R
8

N
O
R
8

N
O
R
8

N
O
R
8

Q
(3
1
)

Q
(3
0
)

Q
(2
9
)

Q
(2
8
)

Q
(2
7
)

Q
(2
6
)

Q
(2
5
)

Q
(2
4
)

Q
(2
3
)

Q
(2
2
)

Q
(2
1
)

Q
(2
0
)

Q
(1
9
)

Q
(1
8
)

Q
(1
7
)

Q
(1
6
)

Q
(1
5
)

Q
(1
4
)

Q
(1
3
)

Q
(1
2
)

Q
(1
1
)

Q
(1
0
)

Q
(9
)

Q
(8
)

Q
(7
)

Q
(6
)

Q
(5
)

Q
(4
)

Q
(3
)

Q
(2
)

Q
(1
)

Q
(0
)

AND4

D(31:0)

SRI

SLI

L

L

LEFT

CE

C

CLR

LEFT

CE

C

CLR

Q(31:0)

ZERO

RR
RDY

NRDY0

initial	loop,
signal	result	ready

and	wait	for	first	number	(k)

load_k
RDY

when	k	appears,
load	it	into	pair	counter	and	result	divisor,

clear	former	result

1

no-op

NRDY1

withdraw	RDY,
wait	for	input	to	be	withdrawn,

once	input	is	withdrawn,	proceed

RDYrequest	x1

NRDY0

load_x1
decrement_counter

RDY

no-op

load	x1,
decrement	pair	counter	in	the	process

withdraw	RDY,
wait	for	input	to	be	withdrawn

NRDY1

RDYrequest	x2

NRDY0

mult_load
RDY

with	x2	on	the	input	and	x1	in	the	memory,
the	multiplicator	circuit	can	be	loaded

with	sum	and	difference

mult_done
check	for	multiplication	by	0,

if	mult	is	done	from	the	start,
there's	no	multiplication	to	be	done

mult_shift

mult_lsb 10

mult_done 0

no-opwait	for	input	to	be	withdrawn

NRDY1

1

0

01

1

counter_zero

perform	standard	shift-and-add	multiplication,
shifting	and	adding	in	separate	steps

to	avoid	race	condition

0
if	there	are	more	pairs	to	process,

repeat	pair	processing	loop,
otherwise	go	home

0

Michał	Szopiński
Exam	problem	1
Flowchart

0

1

1

mult_add

pair
processing
loop

multiplication	loop

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

clock

stable

statei

e
n
tr
y

ju
m
p

op

clock

stable

state

e
n
tr
y

ju
m
p

op

INV

op0

op1

G
N
D

clock

stable

state

e
n
tr
y

ju
m
p

op

INV

op3

clock

stable

state

e
n
tr
y

ju
m
p

op

G
N
D

op4

clock

stable

state

e
n
tr
y

ju
m
p

op

clock

stable

state

e
n
tr
y

ju
m
p

op

INV

clock

stable

state

e
n
tr
y

ju
m
p

op

G
N
D

op6

op7

clock

stable

state2

e
n
tr
y

ju
m
p

alt

a
lt
_
ju
m
p op

O
R
2

op0

op1

op3

op4

op6

op7

BUF

op0

op1
BUF

op4
BUF

op7
BUF

op4

op10

op9

BUF

BUF

BUF

Michal Szopinski
EDC exam problem 1
Control subsystem

A
N
D
2
B
1

A
N
D
2

op9

clock

stable

state

e
n
tr
y

ju
m
p

opadd

O
R
2

G
N
D

op10

G
N
D

clock

stable

state2

e
n
tr
y

ju
m
p

alt

a
lt
_
ju
m
p op

OR2

nrdy

clock

clock

clock

nrdy

nrdy

clock

clock

clock

nrdy

clock

nrdy

clock

clock

nrdy

mult_done

rr

load_k

load_x1

mult_load

decrement_counter

mult_shift

mult_add

mult_lsb

clock

clock

mult_done

shift

withdraw

load mult

request x2

withdraw

request x1

withdraw

load k

initial loop

rdy

OR6

load x1

decrement counter

A
N
D
2
B
1

A
N
D
2

counter_zero

O
R
2

clock

stable

state

e
n
tr
y

ju
m
p

op

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

F
D

Q
DC

c
lo
c
k

O
R
2

A
N
D
2
B
1

A
N
D
2

stable

e
n
tr
y

ju
m
p

EDC Exam problem 1

Sequencer state

Michal Szopinski

op

1 LIBRARY ieee;
2 USE ieee.std_logic_1164.ALL;
3 USE ieee.numeric_std.ALL;
4 LIBRARY UNISIM;
5 USE UNISIM.Vcomponents.ALL;
6 ENTITY system_system_sch_tb IS
7 END system_system_sch_tb;
8 ARCHITECTURE behavioral OF system_system_sch_tb IS
9

10 COMPONENT system
11 PORT(clock : IN STD_LOGIC;
12 x : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
13 y : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
14 y_frac_bits : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
15 nrdy : IN STD_LOGIC;
16 rdy : OUT STD_LOGIC;
17 rr : OUT STD_LOGIC);
18 END COMPONENT;
19
20 SIGNAL clock : STD_LOGIC := '0';
21 SIGNAL x : STD_LOGIC_VECTOR (7 DOWNTO 0) := "00000000";
22 SIGNAL y : STD_LOGIC_VECTOR (31 DOWNTO 0);
23 SIGNAL y_frac_bits : STD_LOGIC_VECTOR (7 DOWNTO 0);
24 SIGNAL nrdy : STD_LOGIC := '0';
25 SIGNAL rdy : STD_LOGIC;
26 SIGNAL rr : STD_LOGIC;
27
28 BEGIN
29
30 UUT: system PORT MAP(
31 clock => clock,
32 x => x,
33 y => y,
34 y_frac_bits => y_frac_bits,
35 nrdy => nrdy,
36 rdy => rdy,
37 rr => rr
38);
39
40 clock <= not clock after 1 ns;
41
42 -- *** Test Bench - User Defined Section ***
43 tb : PROCESS
44
45 procedure Feed_number(
46 constant num : in integer) is
47 begin
48 if rdy = '0' then wait until rdy = '1'; end if;
49 wait for 2 ns; -- comment out wait for faster operation
50
51 x <= std_logic_vector(to_unsigned(num, 8));
52 nrdy <= '1';
53
54 if rdy = '1' then wait until rdy = '0'; end if;
55 wait for 2 ns;
56
57 x <= "00000000";
58 nrdy <= '0';
59 end procedure;
60
61 BEGIN
62 -- feed k
63 wait for 50 ns;
64 Feed_number(4);
65
66 -- feed 4 pairs
67 Feed_number(123);
68 Feed_number(85);
69 Feed_number(71);
70 Feed_number(2);
71 Feed_number(0);
72 Feed_number(0);
73 Feed_number(64);
74 Feed_number(64);
75 -- expected result: 9808.375 = 156934 / (2^4)
76
77 -- feed k
78 wait until rr = '1';
79 wait for 50 ns;
80 Feed_number(2);
81
82 -- feed 2 pairs
83 Feed_number(69);
84 Feed_number(13);
85 Feed_number(7);
86 Feed_number(5);
87 -- expected result: -213.25 = -1706 / (2^3)
88
89 WAIT; -- will wait forever
90 END PROCESS;
91 -- *** End Test Bench - User Defined Section ***
92
93 END;
94

rr

0 ns 100 ns 200 ns 300 ns 400 ns 500 ns

