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1 Design objectives

The goal of the project was to create a digital system calculating the equation:

y =

k∑
i=1

(4x2
2i − 1

4x
2
2i−1)

k
(1)

where k ∈ {1, 2, 4, 8, 16, 32, 64, 128}. The numbers arrive in series over an
8-bit parallel bus and are coded using natural binary code. k arrives first, x1,
x2, x3, . . . follow.

Handshaking was to be implemented using the following signals:

• RDY (ready) – raised by the system to request a number

• NRDY (number ready) – raised by the external circuit to signalize that the
requested number is waiting at the input

• RR (result ready) – raised by the system to signalize that the output con-
tains the calculated result, used simultaneously with RDY

Result accuracy and computational speed were critical factors of the design.
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2 Operational subsystem design

2.1 Multiplication operands

A crucial observation to the realization of the circuit is that formula (1) can be
rewritten as:

y =

k∑
i=1

(2x2i + 1
2x2i−1)(2x2i − 1

2x2i−1)

k
(2)

thus reducing the required amount of multiplication operations to one. Be-
cause calculating the operands of the multiplication requires both numbers to
be available, x2i−1 must be buffered inside a register before x2i is loaded.

Once both numbers are available, they can be supplied to two adders, where
they can be added and subtracted. The results are then loaded as the operands
of the multiplicator circuit.

2.2 Bus width considerations

In order to preserve accuracy when x2i−1 and x2i are divided and multiplied
by 2, the buses supplying them must be widened to carry at least 10 bits, nine
of which integer and one fractional. In practice, a 16-bit bus is used. Because
both numbers are positive, zeros are used as padding on on both sides.

To prevent integer overflow when summing up individual products, a suffi-
ciently wide register must be chosen to store the result. A product of two 10-bit
numbers can be up to 20 bits wide, therefore the output width was chosen to be
the nearest power of 2, 32, which can store the sum of up to 211 such numbers,
positive or negative.

Even though the output of the adders is 16-bit, the shift registers storing
the operands must match the width of the result register. This is because when
the registers are shifted, the operands may become truncated, resulting in an
incorrect sum.

The sum of products, before the final division, is a 32-bit number with 1
sign bit, 29 integer bits and 2 fractional bits, as a natural consequence of the
multiplication of two 1-fractional-bit signed numbers.
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2.3 Multiplicator circuit

The part of the operational unit responsible for the multiplication is a standard
implementation of the “shift and add” algorithm. On each iteration, operand A
is shifted to the left and operand B is shifted to the right. If the least significant
bit of B is high, A is added to the sum. The multiplication ends when operand
B is zero.

The result is cleared when k is loaded to the circuit.

2.4 Dynamic division and output format

One of the requirements of the project is the dynamic division of the final sum by
a variable power of two. There are two commonly used methods of performing
such division, each resulting in a different output format.

The first way is to split the output bus into an integer sub-bus an a fractional
sub-bus, each containing a different amount of significant bits. By default, the
output contains two significant fractional bits (2.2§4), but it may contain up to
9 significant fractional bits and as few as 23 significant integer bits (including
the sign) after being divided by 27 = 128.

The implementation of this method would require the use of two shift reg-
isters, one shifting into the other, and is linear in complexity. As such, it was
concluded that it would be inefficient given the requirements of the design.

The second approach is to output the summation result as-is and specify
the number of fractional bits separately for the external system to handle. The
number of significant bits is given by:

nfrac = 2 + log2 k (3)

Given the fact that k is restricted to a set of powers of two, the logarithm-
calculating circuit can be constructed as a simple combinatorial circuit of three
OR gates. Its output can then be fed into an adder with a constant value
supplied as the second operand, and the number of fractional bits is thereby
calculated with static complexity. Such an approach was used in the final design.

Because k only appears at the start of the number sequence, it must be
buffered to be available at the end.
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2.5 Processed values counter

Lastly, to keep track of the number of processed pairs (the number i), the
circuit uses a bi-directional counter permanently configured to decrement its
stored value. The counter is loaded simultaneously with the k buffer.

3 Control subsystem algorithm

3.1 I/O operations and handshaking

Considering the specification of the handshaking protocol, inputting numbers
into the system can be thought of as “requesting” them from the external circuit,
following a double-acknowledgment pattern. All input operations follow the
general algorithm:

1. RDY is raised to request a new number from the external circuit.

2. NRDY is raised to signalize that the number is ready to be read.

3. RDY is lowered to request input withdrawal once it’s been read.

4. NRDY is lowered, enabling further communication.

Output operations are simplified; the system raises RR whenever its output
contains a valid result. No acknowledgment is taken from the external circuit.

3.2 Main program loop

The main loop starts with a special case of the input loop. It requests a num-
ber while simultaneously raising RR to signify that the result of the previous
calculation is ready. Once the first number k becomes available, RR is lowered
and the number is read into the memory, specifically the pair counter and the
divisor buffer. The result register is also cleared.

When k is withdrawn, the program proceeds into the pair processing loop,
after which the main loop reiterates.

3.3 Pair processing loop

To begin, the pair processing loop requests two numbers: x2i−1 and x2i. When
x2i−1 becomes available, it’s loaded into a buffer. When x2i becomes available,
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the sum and the difference of the two numbers are fed into the multiplicator
circuit for further processing.

As an optimization, the loading of x2i−1 is also used to decrement the pro-
cessed pairs counter. A separate step would make the algorithm clearer, but
also slower.

Before the multiplication begins, the algorithm checks if it has already fin-
ished to account for multiplication by 0. If that is the case, the multiplication
step is skipped, otherwise, the program steps into a dedicated loop.

Following the multiplication, the processed values counter is taken into con-
sideration. If there are no more pairs to be processed, the processing loop
terminates, otherwise it reiterates.

3.4 Multiplication loop

The multiplication loop is a standard implementation of the “shift and add”
algorithm. Addition and shifting occur on separate steps to avoid a race condi-
tion.

3.5 Algorithm reiteration

Once the processing loop terminates, the main loop reiterates. No further steps
are required at this point. The result of the summation is stored in the memory
and is available at the output. The divisor circuit is outputting the correct
number of fractional bits thanks to the number k being stored in its memory.
The RR flag can be safely raised while awaiting input.

3.6 Two-phase clock

To avoid race conditions between the control and operational subsystems, a two-
phase clock is used. This introduces a delay between the control signals being
sent and executed, ensuring they are properly received before being processed.
In practice, the clock is implemented by negating the clock signal in front of the
operational subsystem.
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1   LIBRARY ieee;
2   USE ieee.std_logic_1164.ALL;
3   USE ieee.numeric_std.ALL;
4   LIBRARY UNISIM;
5   USE UNISIM.Vcomponents.ALL;
6   ENTITY system_system_sch_tb IS
7   END system_system_sch_tb;
8   ARCHITECTURE behavioral OF system_system_sch_tb IS
9   

10   COMPONENT system
11   PORT( clock : IN STD_LOGIC;
12   x : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
13   y : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
14   y_frac_bits : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
15   nrdy : IN STD_LOGIC;
16   rdy : OUT STD_LOGIC;
17   rr : OUT STD_LOGIC);
18   END COMPONENT;
19   
20   SIGNAL clock : STD_LOGIC := '0';
21   SIGNAL x : STD_LOGIC_VECTOR (7 DOWNTO 0) := "00000000";
22   SIGNAL y : STD_LOGIC_VECTOR (31 DOWNTO 0);
23   SIGNAL y_frac_bits : STD_LOGIC_VECTOR (7 DOWNTO 0);
24   SIGNAL nrdy : STD_LOGIC := '0';
25   SIGNAL rdy : STD_LOGIC;
26   SIGNAL rr : STD_LOGIC;
27   
28   BEGIN
29   
30   UUT: system PORT MAP(
31   clock => clock,
32   x => x,
33   y => y,
34   y_frac_bits => y_frac_bits,
35   nrdy => nrdy,
36   rdy => rdy,
37   rr => rr
38   );
39   
40   clock <= not clock after 1 ns;
41   
42   -- *** Test Bench - User Defined Section ***
43   tb : PROCESS
44   
45   procedure Feed_number(
46   constant num : in integer) is
47   begin
48   if rdy = '0' then wait until rdy = '1'; end if;
49   wait for 2 ns; -- comment out wait for faster operation
50   
51   x <= std_logic_vector(to_unsigned(num, 8));
52   nrdy <= '1';
53   
54   if rdy = '1' then wait until rdy = '0'; end if;
55   wait for 2 ns;
56   
57   x <= "00000000";
58   nrdy <= '0';
59   end procedure;
60   
61   BEGIN
62   -- feed k
63   wait for 50 ns;
64   Feed_number(4);
65   
66   -- feed 4 pairs
67   Feed_number(123);
68   Feed_number(85);
69   Feed_number(71);
70   Feed_number(2);
71   Feed_number(0);
72   Feed_number(0);
73   Feed_number(64);
74   Feed_number(64);
75   -- expected result: 9808.375 = 156934 / (2^4)
76   
77   -- feed k
78   wait until rr = '1';
79   wait for 50 ns;
80   Feed_number(2);
81   
82   -- feed 2 pairs
83   Feed_number(69);
84   Feed_number(13);
85   Feed_number(7);
86   Feed_number(5);
87   -- expected result: -213.25 = -1706 / (2^3)
88   
89   WAIT; -- will wait forever
90   END PROCESS;
91   -- *** End Test Bench - User Defined Section ***
92   
93   END;
94   
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